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to a Volume Grid Generation Code

Christian H. Bischof* and Andrew Mauer†
Argonne National Laboratory, Argonne, Illinois 60439

and
William T. Jones‡ and Jamshid Samareh§

Computer Sciences Corporation, Hampton, Virginia 23666

Automatic differentiation (AD) is a methodology for developing reliable sensitivity-enhanced versions
of arbitrary computer programs with little human effort. As such, it can vastly accelerate the use of
advanced simulation codes in a multidisciplinary design optimization context because the time for gen-
erating and verifying derivative codes is greatly reduced. The application of the recently developed au-
tomatic differentiation of C programs (ADIC) prototype tool for ANSI-C programs on the coordinate
and sensitivity calculator for multidisciplinary design optimization multiblock three-dimensional volume
grid generator are reported. The ADIC-generated code can easily be interfaced with Fortran derivative
codes generated with the ADIFOR AD tool for Fortran 77 programs; thus providing ef� cient sensitivity-
enhancement techniques for multilanguage, multidiscipline problems.

I. Introduction

M ULTIDISCIPLINARY design optimization (MDO) is a
methodology for the design of complex engineering sys-

tems and subsystems that coherently exploits the synergism of
mutually interacting phenomena. Typically, the MDO process
proceeds in an iterative fashion, with each MDO cycle includ-
ing at least the generation of a numerical solution, determi-
nation of associated design sensitivities, and system optimi-
zation.

Of these parts, the generation of the numerical solution is
the truly domain-dependent piece of this process, where in-
depth knowledge of the problem at hand is used to develop
the necessary simulation codes. For system optimization, on
the other hand, a wide suite of existing optimization algorithms
is readily available (see, e.g., Ref. 1).

An MDO problem of particular interest in the aerospace
community is the design optimization of the high-speed civil
transport. This problem, at the minimum, includes computa-
tional � uid dynamics (CFD) and, therefore, numerical grid
generation as an integral part of the design process. The pos-
sible variation of the simulation method employed for mod-
eling this problem leaves the computation of design sensitiv-
ities for the simulation codes in question. Here, we should keep
the following issues in mind:
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1) Reliability: The computed derivatives should be com-
puted accurately.

2) Computational cost: The amount of memory and runtime
required for the derivative code should be minimized.

3) Scalability: Whatever method we choose should be ap-
plicable to large codes.

4) Human effort: A user should not have to spend much of
his or her time on developing computational procedures for
computing derivatives.

Traditionally, hand-coding, � nite difference (FD) approxi-
mations, and symbolic methods have been used for the com-
putation of derivatives. However, these methods fall short with
respect to the previously mentioned criteria. The main draw-
back of FD approximations is their numerical unpredictability
as well as their computational cost. In contrast, the hand-cod-
ing and symbolic approach cannot be directly applied to large
codes and they require considerable human effort. In addition,
signi� cant effort has to be expended whenever the analysis
code is modi� ed.

Recently, so-called automatic differentiation (AD) tools
have emerged as a promising approach for computing deriv-
atives. AD techniques rely on the fact that every function, no
matter how complicated, is executed on a computer as a (po-
tentially very long) sequence of elementary operations such as
additions, multiplications, and elementary functions such as sin
and cos (see, e.g., Refs. 2 and 3). By repeatedly applying the
chain rule of derivative calculus to the composition of those
elementary operations, one can compute, in a completely me-
chanical fashion, derivatives of f that are correct up to machine
precision.4

In this paper we report on the application of the recently
developed automatic differentiation of C papers (ADIC) proto-
type tool for ANSI-C programs on the coordinate and sensitivity
calculator for multidisciplinary design optimization (CSCMDO)
multiblock three-dimensional volume grid generator. CSCMDO
is a general-purpose grid generator taylored speci� cally to MDO
applications. The next section gives a brief overview of
CSCMDO. ADIC provides AD capability for codes written in
ANSI-C, and the philosophy and approach underlyingADIC are
described in Sec. III. In Sec. IV we report on the results obtained
with sensitivity-enhanced versions of CSCMDO generated with
ADIC. Lastly, we summarize our results.
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Fig. 1 Integration of CSCMDO into the design loop.

II. CSCMDO Multiblock Three-Dimensional
Volume Grid Generator

CSCMDO is a general-purpose, multiblock, three-dimen-
sional, structured volume grid generator with specialized fea-
tures that are highly suitable for MDO-type grid modi� cations.
The code is designed to execute in a batch environment with
control provided via an ASCII user input � le. The code is
capable of modifying any of the six faces of a block to re� ect
changes in the optimized geometry as de� ned by an input sur-
face(s). This section gives a brief overview of CSCMDO; a
more detailed discussion can be found in Ref. 5.

With the code executing in a batch mode, it can be incorporated
directly into the design loop as shown in Fig. 1. As mentioned
earlier, the computational method at the very least contains a CFD
analysis. Information input from outside of the loop is generated
one time before the loop is initiated. This information includes
the baseline geometry surface(s), baseline CFD volume grid, and
the user input � le. The design loop is then rendered self-suf� cient
requiring no further human intervention. CSCMDO operates
within the design loop to provide automated volume grid-
generation/modi� cation for each design cycle.

The surface de� nition(s) is provided in the form of a structured
mesh of discrete point data. The number and distribution of points
de� ning the surface are not required to match those of the desired
CFD grid. However, suf� cient point resolution must be provided
so as to adequately de� ne all surface curvature.

The baseline volume grid may be generated using any struc-
tured grid-generation package. CSCMDO supports the � le for-
mats commonly used in the � eld of CFD. No restriction on grid
topology is imposed. However, the topology of the volume grid
must be consistent with the CFD analysis and capable of incor-
porating design-cycle geometry modi� cations. The changes rep-
resented by modi� ed geometry surface(s) are assumed to be
small, but in the event that geometry changes do violate the vol-
ume topology, grid quality checks provide return codes to the
software controlling the loop for appropriate action.

Individual block faces may be modi� ed independently using
a variety of methods including direct injection of a modi� ed
surface, parametric updates to a modi� ed surface, projection
to a modi� ed surface, and the deformations conforming to a
modi� ed surface. Volume modi� cations are accomplished for
each block using algebraic reinitialization of the block interior,
or by deformation of the original block interior based on
changes de� ned on the six block faces.

III. ADIC Prototype Tool
Traditionally, two approaches to AD have been developed:

the so-called forward and reverse modes. These modes are
distinguished by how the chain rule is used to propagate de-
rivatives through the computation. We brie� y summarize the

main points about these two approaches, a more detailed de-
scription can be found in Ref. 6 and the references therein.

Let us assume that we have a function f that maps an n-
vector x into an m-vector y. The forward mode propagates
derivatives of intermediate variables with respect to the inde-
pendent variables and follows the control � ow of the original
program. Exploiting the linearity of differentiation, the forward
mode allows us to compute arbitrary linear combinations

J ?S (1)

of columns of the Jacobian

­y(1) ­y(1)
? ? ?

­x(1) ­x(n)

? ?J = ? ? (2)? ?

­y(m) ­y(m)
? ? ?

­x(1) ­x(n)

For an n 3 p matrix S, the effort required is roughly 2(p)
times the runtime and memory of the original program. In
particular, when S is a vector s, we compute the directional
derivative

f (x 1 h s) 2 f (x)*J s = lim (3)* hh 0®

In contrast, the so-called reverse mode of AD propagates
derivatives of the � nal result with respect to an intermediate
quantity, so-called adjoint quantities. To propagate adjoints,
one must be able to reverse the � ow of the program, and re-
member or recompute any intermediate value that nonlinearly
impacts the � nal result. This may not be easily achieved for
general programs, and these issues are further discussed in Ref.
6. In either case, AD computes derivatives accurate to machine
precision4 and is directly applicable to computer programs of
arbitrary length containing branches, loops, and subroutines.

From a user’s perspective, AD tools preferably should be-
have like black boxes, which, given the code describing the
function to be differentiated, and an indication of which pro-
gram variables correspond to the independent and dependent
variables with respect to differentiation, generate an ef� cient
sensitivity-augmented code for computing the desired deriva-
tives without any need for human intervention.

Fundamentally, there are two approaches for augmenting a
computer code with derivative computations. Languages like
C11 or Fortran 90 support a language feature called operator
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Fig. 3 Sensitivity on the surface of CFD grid X coordinate with respect to wing root chord.

Table 2 Timing results for Sun-4

Number of design variables

1 2 3 4 5 6 7

Best-case FD 57 86 115 144 172 201 230
CSCMDO.AS (1) 149 205 278 351 465 546 637
CSCMDO.AD (2) 83 104 131 160 184 213 242
a
Times in user seconds.

Table 1 Timing results for RS/6000

Number of design variables

1 2 3 4 5 6 7

Best-case FD 39 59 79 99 118 138 158
CSCMDO.AD (1) 130 174 223 281 324 526 560
CSCMDO.AD (2) 69 84 103 119 144 192 212
a
Times in user seconds.

Fig. 2 Structure of CFD design problem.

overloading, which allows the rede� nition of the behavior of the
elementary arithmetic operations and, hence, can be employed to
attach, ‘‘under the rug,’’ so to speak, derivative objects to original
program variables, and apply the rules of differentiation one op-
eration at a time. The ADOL-C tool7 employs such an approach
to compute derivatives of arbitrary order.

ADIC, in contrast, employs a source-transformation approach
to directly rewriting the source code to compute � rst-order deriv-
atives. This approach requires considerable compiler infrastruc-
ture, and ADIC employs part of the Sage11 (Ref. 8) source
transformation infrastructure for C11 programs to transform
ANSI-C programs. With minor restrictions, the currentADIC pro-
totype accepts arbitrary ANSI-C programs and can handle, for
example, subroutines, dynamic memory allocation, and pointers.
The code generated is a portable ANSI-C code that can easily be
modi� ed to, say, print out sensitivities. The features and limita-
tions of ADIC are discussed in detail in Ref. 9, here we brie� y
summarize the main points.

ADIC, like ADIFOR, employs a hybrid forward-/reverse-
mode approach to generating derivatives. For each assignment
statement, the reverse mode is used to generate code that com-
putes the partial derivatives of the result with respect to the
variables on the right-hand side and then the forward mode is
employed to propagate overall derivatives. Hence, ADIC and
ADIFOR provide the directional derivative computation pos-
sibilities [see Eq. (1)] associated with the forward mode of
automatic differentiation. As a result, derivatives generated, for
example, by a Fortran code differentiated with ADIFOR, can
easily be used as seed matrix for an ADIC-augmented-C code,
whose derivatives, in turn, can again easily be ingested by a
Fortran code. As seen in the next section, this is of vital im-
portance in the MDO context.

ADIC can also transparently exploit sparsity in derivative
computations through the use of the SparsLinC library,6,9

which, as a byproduct of the computation, will automatically
compute the sparsity pattern of large sparse Jacobians.

IV. Experimental Results
To improve the aerodynamic performance of the high-speed

civil transport, we embed the system shown in Fig. 2 in an
optimization context. The rapid airplane parametric input de-
sign (RAPID) code10 is written in Fortran 77 and, given geo-
metric design variables (gdv), for example, camber, produces
a aircraft surface grid (sfg). From this output, CSCMDO builds
a three-dimensional volume grid (vlg). TLNS3D, a three-di-
mensional Navier– Stokes solver for turbulent � ow11,12 then
uses the geometry information as well as the stream parameters
(strm) to compute the � ow (� w) over the aircraft and from
there, measures of performance such as lift or drag. In the
MDO design context we then need (­� w /­gdv) at every pass
through the design cycle.

We mention several issues that are important to keep in mind
when approaching this problem:

1) Computationally, this process is dominated by the CFD
solver. The runtime of the grid generators is almost insigni� -
cant compared to that of TLNS3D.
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Fig. 5 Sensitivity in the � eld of CFD grid X coordinate with respect to wing root chord.

Fig. 4 CFD volume grid produced by CSCMDO.AD.

2) Accurate sensitivities are required for all modules, and in
particular for the grid generators, as errors in their derivatives
would contaminate derivatives of TLNS3D.

3) The number of design objectives (� w) is small, whereas
the number of surface grid points (sfg) and certainly the num-
ber of volume grid points (vlg) usually is very large.

4) The codes employed continue to be developed and re-
� ned.

In our experiments, we only concerned ourselves with com-
puting the derivatives (­vlg /­sfg), employing the RAPID and

CSCMDO codes. The ADIFOR tool6,13 was applied to RAPID
and a � le containing (­sfg/­gdv) was written by the sensitivity-
enhanced version of RAPID. We also mention that ADIFOR
has also been successfully applied to the single-block version
of TLNS3D, and the results are summarized in Ref. 14.

The ADIC prototype was applied to CSCMDO. The fact that
the ADIC interface allows for derivative chaining is essential
in this context. That is, instead of computing (­vlg/­sfg),
which would be a huge (albeit sparse) matrix, which then
would be multiplied with (­sfg /­gdv) to obtain (­vlg/­gdv),
we can directly compute (­vlg /­gdv) by using (­sfg /­gdv) as
the derivative seed matrix associated with inputs correspond-
ing to the surface grid (sfg). As a result, the complexity of
CSCMDO.AD, the ADIC-generated derivative code for
CSCMDO, depends on the number of geometric design vari-
ables (gdv), not on the number of surface grid points (sfg).

Varying the number of geometric design variables from 1 to
7, we compare the runtime performance of CSCMDO.AD with
that of a one-sided FD approximation on a Sun Sparcstation 5
and IBM RS/6000 platform. Employing version 2.5.8 of the
GNU C compiler with the ‘‘-02 -ffast-math’’ compiler � ags,
we obtain the performance shown in Tables 1 and 2.

To generate a grid, CSCMDO can be thought of as using a
two-step approach. First, it generates a grid, secondly, it vali-
dates the quality of the generated grid. In the line labeled
‘‘CSCMDO.AD (1),’’ we differentiated through the entire
CSCMDO code, including the validation part. The line labeled
‘‘CSCMDO.AD (2)’’ refers to a somewhat more judicious use
of CSCMDO, where derivatives are only propagated through
the grid-generation part and not through the validation part.
Note, however, that because ADIC intersperses derivatives and
original program variables (see Ref. 9 for details), the vali-
dation part also had to be modi� ed by ADIC to have data
structures compatible with the sensitivity-enhanced grid gen-
eration part, but it did not include code for propagating deriv-
atives. The line labeled ‘‘Best-case FD’’ lists the time required
for a one-sided � nite difference (FD) approximation of the
derivatives, under the assumption that the correct step size was



BISCHOF ET AL. 573

chosen. This is an optimistic assumption, because, typically,
several perturbation sizes had to be tried before a good match
of the derivative approximations with FD along with the values
obtained by CSCMDO.AD was obtained.

We see that the code generated by ADIC when applied to
all of CSCMDO is considerably slower than a ‘‘best-case’’ FD
approximation of derivatives. On the other hand, if we do
avoid the (useless) derivative computation in the veri� cation
stage, CSCMDO.AD exhibits runtimes that are close to that
of a best-case FD approximation. Note that we cannot avoid
the veri� cation stage in FD approximations, as the new volume
grid arising from a parameter perturbation must be veri� ed.
We also mention that ADIC is still in the prototype stage and
further improvements will narrow this gap. In either case,
though, these runtimes are dwarfed by the runtime of a CFD
� ow code such as TLNS3D. However, the accuracy of the grid
sensitivities is essential for the accuracy of the overall design
sensitivities.

When examining our results, considering the sensitivity of
the CFD volume grid X coordinate with respect to a change
in wing root chord, we obtain the results shown in Figs. 3 – 5.
Note that our RAPID output assumes that the wing trailing
edge remains � xed with respect to the fuselage. Therefore, a
change in the wing root chord should only be propagated for-
ward of the wing trailing-edge/fuselage intersection.

The volume grid shown consists of two blocks and over
525,000 grid points. Contour lines represent the sensitivity of
the volume grid X component with respect to a change in the
root chord. The expected symmetry can be noted in Figs. 4
and 5. The grid X component can be seen to be the most
sensitive to changes in the wing root chord around the leading
edge of the wing/fuselage intersection. As mentioned earlier,
the surface grid points (sfg) and (­sfg /­gdv) were obtained
from the sensitivity-enhanced version of RAPID. These data
were used by CSCMDO.AD to produce the volume grid points
(vlg) and the sensitivities (­vlg/­gdv) shown in Figs. 3 – 5.

V. Conclusions
In this paper we reported on the application of the ADIC

automatic differentiation tool for ANSI-C programs on the
CSCMDO multiblock three-dimensional volume grid genera-
tor. CSCMDO is a general-purpose grid generator tailored spe-
ci� cally for MDO applications. ADIC is a prototype tool for
the automatic sensitivity enhancement of codes written in
ANSI-C. In our experience, ADIC allowed us to obtain ac-
curate derivatives with a minimum of human effort. Without
ADIC we would have been forced to spend considerable effort
developing a sensitivity-enhanced version by hand. Instead,
this effort was more pro� tably spent improving the features of
CSCMDO. Together with the ADIFOR tool for Fortran 77 pro-
grams, ADIC provides ef� cient support for multilanguage,
multidisciplinary design optimization where codes written in
Fortran and C are embedded in the design loop.
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